杉杉股份评级(买入)公司深度报告:借力快充、工艺及专利,锂电航母再起航
股票代码 :600884
股票简称 :杉杉股份
报告名称 :公司深度报告:借力快充、工艺及专利,锂电航母再起航
评级 :买入
行业:电子元件
借力快充、工艺及专利,锂电航母再起航 —杉杉股份(600884)公司深度报告 2021 年 08 月 23 日 |
武浩 | 陈磊 |
S1500520090001 | S1500520090003 |
010-83326711 | 010-83326706 |
wuhao@cindasc.com | chenleia@cindasc.com |
证券研究报告 |
公司研究
公司深度报告
杉杉股份(600884) | ||||||||
投资评级 | 买入 | |||||||
上次评级 | 买入 | |||||||
| ||||||||
2019A | 2020A | 2021E | 2022E | 2023E | |
营业总收入(百万元) | 8,680 | 8,216 | 24,670 | 28,111 | 33,360 |
增长率 YoY % | -2.0% | -5.3% | 200.3% | 13.9% | 18.7% |
归母净利润(百万元) | 270 | 138 | 1,917 | 2,801 | 3,540 |
增长率 YoY% | -75.8% | -48.9% | 1288.7% | 46.2% | 26.4% |
毛利率% | 21.2% | 18.4% | 21.3% | 24.0% | 24.0% |
净资产收益率ROE% | 2.3% | 1.1% | 13.4% | 16.4% | 17.1% |
EPS(摊薄)(元) | 0.17 | 0.08 | 1.18 | 1.72 | 2.17 |
市盈率 P/E(倍) | 81.52 | 212.70 | 24.97 | 17.08 | 13.52 |
市净率 P/B(倍) | 1.86 | 2.37 | 3.34 | 2.79 | 2.32 |
资料来源:Wind,信达证券研发中心预测; 股价为 2021 年 08 月 19 日收盘价
请阅读最后一页免责声明及信息披露http://www.cindasc.com 3
与市场不同之处.............................................................................................................................. 5 一、石墨负极:杉杉具备厢式炉先发优势,加速一体化布局 .................................................. 6 1.1 传统坩埚入炉工艺生产流程较长,效率较低 ....................................................................... 6 1.2 升级厢式入炉工艺,技术要求更高,但成本优势明显 ........................................................ 7 1.3 连续法生产工艺可进一步降本,但产业化仍面临障碍 ........................................................ 9 1.4 杉杉股份最先应用厢式炉工艺,加大产能建设保障负极材料龙头地位 .......................... 10 二、快充负极材料:负极为快充关键,杉杉技术领先 ............................................................. 11 2.1 快充型锂电池加速渗透,消费、动力齐开拓 ...................................................................... 11 2.2 快充关乎锂电池安全,负极材料是实现快充的核心材料 .................................................. 12 2.3 杉杉在快充市场处领先地位,加速消费及动力快充客户放量 .......................................... 13 三、硅碳负极:产业化应用加速,杉杉为一线龙头 ................................................................ 14 3.1 硅基负极克容量优势明显,产业链壁垒逐步突破 ............................................................. 14 3.2 硅基负极应用加速开拓,电池+整车厂绑定上游供应商 ................................................... 16 3.3 杉杉处国内硅基负极一线梯队,已实现批量供货,国内应用前景广阔 .......................... 17 四、正极材料:绑定巴斯夫,开拓大客户,突破专利壁垒 .................................................... 18 五、正极材料:加速一体化布局,盈利能力有望持续提升 .................................................... 21 六、盈利预测和估值 .................................................................................................................... 22 七、风险因素 ............................................................................................................................... 22
目 录
图 表 目 录
图表 1:负极石墨化工艺流程 .............................................................................................. 6 图表 2:坩埚石墨炉构造 ..................................................................................................... 6 图表 3:炉内石墨坩埚示意图 .............................................................................................. 6 图表 4:石墨化炉通电加热过程及对应尾气处理过程 .......................................................... 7 图表 5:石墨化车间示意 ..................................................................................................... 7 图表 6:石墨化炉坩埚入炉及厢式入炉工艺对比 ................................................................. 8 图表 7:坩埚入炉与厢式入炉装炉后示意对比 ..................................................................... 8 图表 8:石墨化盈利预测 ..................................................................................................... 9 图表 9:一种连续石墨化炉示意 ........................................................................................ 10 图表 10:杉杉股份负极材料及石墨化产能及未来规划 ...................................................... 10 图表 11:当前部分快充手机信息 ...................................................................................... 11 图表 12:当前部分快充新能源汽车信息 ........................................................................... 11 图表 13:锂电池充、放电过程示意图 ............................................................................... 12 图表 14:电池热失控过程示意 .......................................................................................... 13 图表 15:荣耀 Magic 和杉杉合作的快充技术 .................................................................... 13 图表 16:荣耀 Magic 介绍 ................................................................................................ 13 图表 17:不同负极材料性能指标对比 ............................................................................... 14 图表 18:三类硅基负极材料优劣势对比 ........................................................................... 15 图表 19:硅基负极不同制备方法对比 ............................................................................... 15 图表 20:硅碳负极生产流程 ............................................................................................. 16 图表 21:硅基负极产能应用情况 ...................................................................................... 16 图表 22:Sila 与戴姆勒合作计划 ...................................................................................... 17 图表 23:Enovix 电池应用领域开拓计划 ........................................................................... 17 图表 24:2015-2025 年中国硅基负极材料市场出货量分析及预测(万吨) ...................... 18 图表 25:不同厂家负极材料产能性能对比 ........................................................................ 18 图表 26:巴斯夫分业务营收(亿欧元) ........................................................................... 19 图表 27:巴斯夫催化剂、涂料收入占比 ........................................................................... 19 图表 28:巴斯夫历年营业收入 .......................................................................................... 19 图表 29:巴斯夫历年净利润 ............................................................................................. 19 图表 30:巴斯夫拥有全球领先专利技术优势 .................................................................... 20 图表 31:巴斯夫全球正极材料产能规划 ........................................................................... 20 图表 32:杉杉股份一体化产业布局情况 ........................................................................... 21 图表 33:杉杉股份正极产业链产能情况 ........................................................................... 21 图表 34:杉杉能源与常青新能源关联采购规模/亿元 ......................................................... 22 图表 35:常青新能源历年营收及关联采购占比 ................................................................. 22
请阅读最后一页免责声明及信息披露http://www.cindasc.com 4
与市场不同之处
市场认为公司负极材料竞争力仍有提升空间,绝对优势不明显。我们认为首先在生产方面,杉杉股份是最早采用厢式炉及吸料天车投料的企业,成本优势明显,在行业石墨化产能短缺,供不应求及需求广阔未来龙头持续扩产背景下,公司成本优势体现的更为突出;其次
在产品方面,公司快充产品性能领先,加速开拓消费及动力市场,在 ATL、CATL 等核心客
户处份额不断扩大,同时杉杉处于国内硅基负极一线梯队,2017 年实现量产并供货,2018
年对 CATL 供货,2021 年下半年起将逐步实现对全球知名电动工具企业的批量供货和新能
车的批量应用,掌握先发优势。
市场认为公司丧失对正极材料子公司控股权,未来业绩贡献下降。我们认为公司通过与巴斯夫合作,可借助巴斯夫全球电池及整车厂客户渠道,实现一线主流客户的迅速开拓及放量;同时,巴斯夫全球专利储备雄厚,全球市场开拓基本不存在专利壁垒,将带动销量的迅
速放量;从业绩看,公司当前持有杉杉能源 68.64%股权,未来股权交割后仍持有 49%权益,将贡献显著投资收益。此外,杉杉股份通过永杉锂业、常青新能源以及巴斯夫镍、钴冶炼基
地等已构建完成正极材料产业链,盈利能力有望持续提升。
一、石墨负极:杉杉具备厢式炉先发优势,加速一体化布局
1.1 传统坩埚入炉工艺生产流程较长,效率较低
负极产品制造流程分为前段粉磨和造粒、石墨化,以及后段碳化混合、筛分和包装三个主要环节。其中石墨化为核心流程之一。现有负极材料石墨化工艺流程主要包括装炉、高温石墨化、冷却、出炉、包装等环节。
图表 1:负极石墨化工艺流程
资料来源:璞泰来公告,信达证券研发中心
石墨化生产过程的核心设备为石墨化炉,其通过加热将碳原子由乱层结构转化为有序的石墨晶体结构。石墨化炉为一种以电作为能源的工业电阻炉,目前应用较为领先的石墨化炉为艾奇逊石墨化炉,其为一种以发明者艾奇逊命名的石墨化炉型。
艾奇逊直流石墨化炉的原材料入炉方式可分为坩埚入炉和厢式入炉两种方式,早期主要使用坩埚入炉。
首先是装炉流程,约需 2 天左右。负极原材料装入石墨坩埚中;然后进入装炉流程,首先是
保温料铺炉底和围炉芯,然后放入坩埚及电阻料,通常一个石墨化炉中会放置 2-3 层坩埚,
每层约有 180-200 个坩埚,坩埚与坩埚之间,以及层与层之间均通过电阻料填充;最后在顶
部覆盖保温料。
图表 2:坩埚石墨炉构造
资料来源:璞泰来公告,信达证券研发中心
图表 3:炉内石墨坩埚示意图
资料来源:集能新材网站,信达证券研发中心
然后为高温石墨化流程,约需要 3 天时间。温度先从室温提升至 800℃,并进一步提升至
3000℃乃至更高温度。一般而言石墨化的完善程度取决于加热的最高温度,温度越高石墨
化程度越好。同时随着温度升高,有低烃类废气排出,需要增加脱硫装置等。
请阅读最后一页免责声明及信息披露http://www.cindasc.com 6
图表 4:石墨化炉通电加热过程及对应尾气处理过程
资料来源:集能新材网站,信达证券研发中心
之后为冷却,清炉和筛分过程,分别约需 10 天、2 天和 2 天。由于高温状态的负极材料无
法直接出料,需要在静置自然冷却至 300℃温度下才能进行清炉操作,清炉时要将填料及坩
埚全部清理出炉。之后坩埚内的负极材料进行检验包装入库,电阻料和保温料进行筛分分级,继续使用或作为石墨化焦销售处理。
一般而言,一个石墨化车间由多台石墨化炉及多组电源设备组成,常有一台石墨化炉处于通电状态,其他数台石墨化炉分别处于装炉、冷却、卸炉操作中。
图表 5:石墨化车间示意
资料来源:信达证券研发中心
1.2 升级厢式入炉工艺,技术要求更高,但成本优势明显
厢式入炉通过增大炉内负极材料的有效容积,实现生产效率的提升和成本大幅下降。厢式入炉工艺将整个炉芯空间分成若干个等容积腔室,负极材料直接放置于石墨板材所围成的厢体空间中,石墨板材具有导电性,厢体通电后自身发热,在作为负极材料容器的同时能够达到材料加热的目的。一方面,厢式入炉工艺避免了负极材料重复装入、装出坩埚以及坩埚入炉、出炉的工序;同时由于厢体自身材质及形状特点,厢体之间无需添加电阻料和保温料、仅需保留厢体四周与炉壁之间的保温材料。
请阅读最后一页免责声明及信息披露http://www.cindasc.com 7
图表 6:石墨化炉坩埚入炉及厢式入炉工艺对比
资料来源:集能新材网站,信达证券研发中心
厢式炉改造工艺较为简单,核心在于工艺控制,同时要求产品标准化程度更高,行业内仅少数头部企业掌握并规模化使用厢式工艺。坩埚入炉改为厢式入炉只需待石墨化加工完成后,炉内降温至正常温度,清理出坩埚,再放入石墨板即可。物料齐备情况下,只需要 1-3 天时间即可,改造时间短。与坩埚装填方式相比,厢式入炉工艺对石墨化工艺掌握程度及技术优化水平要求高,厢板拼接过程精度要求高,装料吸料操作难度大,加热过程需更加精确地控制送电曲线及温度测量。此外,相比坩埚入炉,厢式入炉单炉容积更大,产品调整灵活性降低,要求公司的客户及产品具备较高一致性及标准化,因为更适合大规模生产的龙头企业。
厢式入炉工艺可将单炉容积提升 1 倍,而总耗电量仅增加 10%,降本优势明显。根据璞泰
来公告,内蒙兴丰坩埚装料单炉容积约 92m³,单炉加工量约 55 吨,而采用厢式装料,单炉
容积可提升至 182m³,单炉加工量提升提升至 110 吨,实现单炉容积成倍提升;而成本方
面,厢式炉总耗电量增加约 10%,产品单位耗电量降低 40%-50%左右。
图表 7:坩埚入炉与厢式入炉装炉后示意对比
资料来源:璞泰来公告,信达证券研发中心
请阅读最后一页免责声明及信息披露http://www.cindasc.com 8
正常市场情况下,石墨化环节单吨盈利约 0.3 万元。我们以正常市场条件石墨化单价 1 万元
/吨测算,单吨石墨化生产过程中通常会产生 2-3 吨填充料(保温料+电阻料),该部分可以
增碳剂形式对外出售,对应单吨加工收入在 170 元/吨左右。成本费用方面,我们测算单吨
成本费用合计约 0.7 万元,其中原辅材料、燃料动力、折旧和其他费用分别占比约 30%、
38%、10%和 22%,在 15%所得税假设下,单吨盈利约 0.3 万元/吨。而相比坩埚入炉,厢
式炉可降本约 0.3 万元/吨左右。
图表 8:石墨化盈利对比
资料来源:信达证券研发中心预测 |
1.3 连续法生产工艺可进一步降本,但产业化仍面临障碍
坩埚入炉或厢式入炉均为间歇法生产,间歇法生产过程存在部分问题。主要在于:1. 由于需要填充保温料和电阻料,填充料在加热过程中会消耗大量热量,使得热量损失,热效率下降;2. 在整个 19 天生产周期中,只有 3 天为高温石墨化通电流程,其余时间为进行装炉、
冷却、清炉及筛分等过程,生产效率不高;3. 间歇式生产整个过程需人工装炉、清炉等,不
易实现自动化,人工成本较高、生产效率较低;4.间歇式生产所用的炉型为敞开式,在加热
过程中,会有 CH4、H2 等高发热值挥发分排出,一方面难以工艺应用,一方面需处理尾气
排放回收问题。
部分企业开始尝试连续法生产工艺,可解决间歇式生产部分痛点,并实现降本。行业内在研发的一种连续化生产方式包括采用一种立式石墨化炉进行生产。在生产过程中,原材料由炉体顶部的进料口进入加热室进行加热,立式转动耙对原材料进行搅拌,使其受热均匀;同时原材料逐级向下移动,在不同加热棒构成的温区内进行加热,最终从底部的出料口离开石墨化炉。
从成本角度分析,一方面整个生产过程为自动化连续生产,可连续加料,节约了生产时间,提高生产效率;同时加热设备设置在炉体内,原材料通过转动耙来受热均匀,减少了填充料的使用,降低能耗和原材料成本。
请阅读最后一页免责声明及信息披露http://www.cindasc.com 9
图表 9:一种连续石墨化炉示意
资料来源:《一种石墨纯化炉》,信达证券研发中心
连续法产业化仍需时间。连续法石墨化炉内高温区域温度可达 3000℃左右,目前较少有耐火材料可承受如此高温,需进一步开发相关材料或通过对炉内不同区域温度控制,降低对耐
火性能要求;加热后材料在炉内较短时间即需完成冷却过程,目前尚无较好方案实现快速冷却,由于高温状态容易氧化,如何在较短时间内不被氧化实现冷却也是连续法生产的难点所在;此外还包括进出料口空气隔绝、设备较贵以及产能效率问题等。
1.4 杉杉股份最先应用厢式炉工艺,加大产能建设保障负极材料龙头地位
杉杉股份是国内最先应用厢式炉生产工艺的企业。杉杉股份早在 2018 年即完成厢式石墨化
技术更新换代,公司厢式炉可在温度达到 3000℃前提下,装炉量更大、耗电量更低,随着
近年来公司包头一体化基地等新增产能逐步投产,产能扩大后公司成本优势将持续显现。
同时,杉杉股份是国内首家在石墨化加工中采用吸料天车进行投料的企业,同时配合密闭气力输送系统,不仅能控制微粉扬尘,还能提高出炉实收率,提升经济效益。
加速产能建设,目前已规划 43 万吨负极材料产能。截至 2021 年中,公司拥有负极材料产
能 12 万吨,配套石墨化 4.2 万吨(此外公司通过参股石墨化厂商内蒙古蒙集,预计贡献石
墨化产能产能约 3 万吨)。随着 2021 年四季度包头一体化二期项目投产,公司将新增 6 万
吨负极成品及配套 5.2 万吨石墨化产能;同时,公司公告拟在乌兰察布建设 5 万吨一体化产
能(前期主要石墨化产能)及四川眉山 20 万吨一体化产能,整体来看,公司已规划 43 万
吨负极材料产能,同时石墨化配套比例超 80%。
图表 10:杉杉股份负极材料及石墨化产能及未来规划 | |||||||
原料粉碎/万吨 | 造粒/万吨 | 碳化/万吨 | 石墨化/万吨 | 成品加工/万吨 | |||
宁波 | 0.6 | 3 | 0.5 | 4.6 | |||
上海 | 0.3 | 2 | |||||
郴州 | 1.3 | 1.4 | |||||
湖州 | 1.2 | 0.3 | 1.4 | ||||
福建 | 0.8 | 1.6 | |||||
内蒙古一期 | 4.1 | 4.3 | 2.3 | 2.8 | 6 | ||
合计 | 6 | 8.8 | 3.9 | 4.2 | 15.6 | ||
在建一体化基地 | |||||||
内蒙古二期 | 6 | ||||||
乌兰察布 | 5 | ||||||
四川眉山 | 20 | ||||||
合计 | 46.6 |
资料来源:公司公告,信达证券研发中心
请阅读最后一页免责声明及信息披露http://www.cindasc.com 10
二、快充负极材料:负极为快充关键,杉杉技术领先
2.1 快充型锂电池加速渗透,消费、动力齐开拓
快充手机加速应用。目前,绝大多数手机品牌的旗舰机型或高端机型均已实现快速充电,在充电功率开始超 60W 基础上,充电倍率也已提升至 1.5C 以上,VIVO 及小米部分机型充电
功率已达 120W,在此水平下充电倍率已超 2C,VIVO 部分产品已达 4C 水平。
图表 11:当前部分快充手机信息
品牌 | 机型 | 电池容量/mAh | 充电功率/W | 充电倍率/C |
vivo | IQOO7 | 4000 | 120 | 4.0 |
vivo | IQOO5Pro | 4000 | 120 | 3.8 |
小米 | 小米 10Ultra | 4500 | 120 | 2.5 |
OPPO | Ace2 | 4000 | 65 | 2.1 |
OPPO | Reno4Pro | 4000 | 65 | 2.1 |
OPPO | FindX2Pro | 4260 | 65 | 1.8 |
一加 | 8T | 4500 | 65 | 1.8 |
realme | Q2Pro | 4300 | 65 | 1.8 |
OPPO | Reno5Pro | 4350 | 65 | 1.7 |
OPPO | FindX7Pro | 4500 | 65 | 1.7 |
realme | X7Pro | 4500 | 65 | 1.7 |
华为 | 荣耀 V40 | 4000 | 66 | 1.6 |
vivo | IQOO5 | 4500 | 55 | 1.3 |
小米 | 小米 10Pro | 4500 | 50 | 1.3 |
华为 | Mate40Pro | 4400 | 66 | 1.3 |
小米 | 小米 11 | 4600 | 55 | 1.2 |
vivo | X60Pro+ | 4200 | 55 | 1.2 |
小米 | RedmiK40Pro | 4520 | 33 | 1.2 |
资料来源:各公司官网、第三方测评网站、信达证券研发中心整理注:快充倍率为根据公开信息计算,可能与实际情况有所出入
新能车快速充电加速应用,高倍率快充与高电压平台加速渗透。当前新能车用快充可通过增加充放电倍率、提升整车电压平台等级、以及两者兼用获得,从目前已量产及拟量产车型看,包括保时捷 Taycan 以及现代起亚 IQNIQ5 已将其电压平台提升至 800V,快充倍率提升至
2C 及以上,哪吒和特斯拉超充等也实现 2C 以上快充倍率。
图表 12:当前部分快充新能源汽车信息
品牌 | 车型 | 量产发布时间 | 充电电压 | 续驶里程/KM | 快充倍率/C |
哪吒 | 哪吒 S | 2022 | 750V | 800 | 2.4 |
现代起亚 | IQNIQ5 | 2021 | 800V | 550 | 2.3 |
特斯拉 | V3 超级快充桩 | 480V | 2.0 | ||
保时捷 | Taycan | 2019 | 800V | 407/412/414/450 | 2.0 |
奥迪
e-tron GT quartto | 2021 | 800V | 487 | 2 |
RS e-tron GT | 2021 | 800V | 472 | 2 |
奔驰 | EQS | 2021 | 400V | 770 | 1.4 |
EQA | 2021 | 400V | 486 | 1.4 | |
比亚迪 | 汉-EV | 2020 | 570V | 506/550/605 | 1.2 |
红旗 | E-HS9 | 2020 | 460/510 | 1.2 | |
北汽 | ARCFOX αT | 340V | 400 | 1.2 | |
大众 | ID.6 X | 2021 | 408V | 588 | 1.2 |
请阅读最后一页免责声明及信息披露http://www.cindasc.com 11
沃尔沃 | XC40 RECHARGE | 2020 | 400V | 420 | 1.2 |
通用 | 雪佛兰-畅巡 | 2020 | 350V | 410 | 1.2 |
别克-微蓝 6 | 2021 | 410 | 1.2 |
资料来源:各品牌官网,信达证券研发中心注:快充倍率为根据公开信息计算,可能与实际情况有所出入
2.2 快充关乎锂电池安全,负极材料是实现快充的核心材料
锂电池是依靠锂离子在正极和负极之间的移动来工作的,快充即提高锂离子流动的速度。充电时锂离子从正极脱嵌,经过正极、正极和电解质界面、电解液、电解质和负极界面、负极,嵌入负极;放电过程与充电过程相反。通过提高整个过程的锂离子流动速度实现快充。
图表 13:锂电池充、放电过程示意图
资料来源:《Lithium-ion battery fast charging: A review》,信达证券研发中心
负极材料是实现快充的关键所在,析锂等副反应问题会影响电池安全。大量研究表明,正极材料对锂电池的快充影响不大,主要是负极材料。对于负极而言,除了正常的锂离子嵌入、脱嵌过程外,如果负极的嵌锂空间不足、锂离子嵌入负极阻力太大、锂离子过快从正极脱嵌但无法快速等量嵌入负极,还存在锂离子在负极上沉积为锂金属、而非嵌入负极的析锂反应。析出锂会导致锂盐中锂离子浓度降低,锂金属开始垂直于极片生长,形成锂枝晶,枝晶刺破隔膜与正极接触,产生内短路使电池快速产热,导致热失控。一般而言,电流密度越大、工作温度越低,析锂反应越容易发生。
请阅读最后一页免责声明及信息披露http://www.cindasc.com 12
图表 14:电池热失控过程示意
资料来源:《Lithium-ion battery fast charging: A review》,信达证券研发中心
负极材料性能指标对快充起到重要影响,可通过几个方面改进提升倍率性能。首先,负极材料内载流子的迁移距离越短,石墨材料的颗粒粒径越小,倍率性能越优;其次,负极材料具备各向同性,可以通过构建二次颗粒结构,优化材料倍率性能;另外,通常而言石墨晶体的原子层间距大于锂离子,因而对锂离子扩散阻碍有限,但石墨材料在首次充电时会在表面形成 SEI 膜,对锂离子的扩散形成阻碍,负极材料通过表面包覆方式,降低阻抗提升锂离子渗
透速度,构建快充离子环相当于在负极材料表面形成了锂离子的“高速公路”,进而提升倍率性能。
2.3 杉杉在快充市场处领先地位,加速消费及动力快充客户放量
杉杉在快充等负极材料基础研究方面具备技术积淀,并逐步将相关成果应用到量产中。公司注重负极材料机理研究,如颗粒形状和加工性能关系、粒径和倍率关系,比表面积和快充关系,粘接程度和膨胀关系等,通过技术积淀并将相关产品逐步应用于产业化,公司在负极材料产品性能方面处于领先地位。
杉杉早在 2014 年即与华为合作开发快充负极,并于 2016 年搭载于荣耀 Magic 手机上,实
现 30 分钟 90%的充电效果。2014 年,杉杉便与华为合作开发快充负极材料,采用元素掺
杂技术,在充电速度大幅提升基础上,保持了电池的能量密度和使用寿命。2016 年底荣耀
Magic 上市,标志着杉杉快充材料正式实现批量供货。
图表 15:荣耀 Magic 和杉杉合作的快充技术
资料来源:网易新闻,信达证券研发中心
图表 16:荣耀 Magic 介绍
资料来源:网易新闻,信达证券研发中心
请阅读最后一页免责声明及信息披露http://www.cindasc.com 13
消费方面,2018 年公司成功开发行业领先的新包覆碳化技术,凭借全球领先的技术水平,
实现了主流 3C 企业的认可,销量持续放量。相对固相包覆,新包覆碳化可以进一步增强粉
体表面碳修饰均一性,实现液体包覆剂在粉体表面的充分铺展浸润;凭借全球领先的液相融合碳化技术,公司高能量密度 3C 快充人造石墨的出货量和产品性能均处于全球领先地位;
同时,公司突破 5C 快充技术瓶颈,打造新一代 5C 高能量密度技术平台,相关产品已在全
球主流消费类企业试产,预计 2022 年全面导入,公司快充消费类产品将继续领先市场。
动力方面,2018 年公司研发行业内首款低温快充高能量密度负极材料——QCG 系列负极
材料,并于当年实现对 LG 和 CATL 的批量供货。凭借性能领先的快充材料,2020 年在疫
情背景下,公司 2020 年海外客户销售量实现同比 50%以上增长,2021 年上半年进一步实
现出货量 130%以上增长。
三、硅碳负极:产业化应用加速,杉杉为一线龙头
3.1 硅基负极克容量优势明显,产业链壁垒逐步突破
硅基负极可提升理论克容量,适应高能量密度发展趋势。传统石墨负极理论克容量只有372mAh/g,在传统的石墨负极能量密度的潜力已经充分挖掘的情况下,想要进一步提高电
池容量,硅基负极成为当前解决能量密度问题的最佳手段之一。单质硅具有 4,200mAh/g 的
理论克容量且储量高,硅基负极材料(Si/C、SiO/C)具备碳材料高电导率和稳定性以及硅
材料高容量优点,硅基负极材料和高镍三元正极材料的配合使用能够较大地提高锂离子电池能量密度。随着硅基负极制备工艺及电池厂商对于高镍体系掌握的逐步成熟,硅基负极将迎来广阔的市场发展空间。
图表 17:不同负极材料性能指标对比
性能指标 | 天然石墨 | 人造石墨 | 中间相碳微球 | 石墨烯 | 硅碳复合材料 | 钛酸锂 |
比容量 | 340-370 | 310-360 | 300-340 | 400-600 | 4200 | 165-170 |
(mAh/g) | ||||||
首次效率(%) | 90% | 93% | 94% | 30% | 84% | - |
循环寿命(次) | >1000 | >1500 | >1000 | 10 | 300-500 | >30000 |
工作电压 | 0.2V | 0.2V | 0.2V | 0.5V | 0.3-0.5V | 1.5V |
快充性能 | 一般 | 一般 | 一般 | 差 | 好 | 好 |
倍率性能 | 差 | 一般 | 好 | 差 | 一般 | 好 |
安全性 | 良好 | 良好 | 良好 | 良好 | 差 | 好 |
优点 | 技术及配套工艺成 | 技术及配套工艺成 | 技术及配套工艺成 | 电化学储能性能优 | 理论比能量高 | 倍率性能优异,高低 |
异,充电速度快,可 | 温性能优异,循环性 | |||||
熟,成本低 | 熟,循环性能好 | 熟,倍率性能好,循 | 提高锂电池的负载能 | 能优异,安全性能优 | ||
环性能好 | 力 | 异 | ||||
缺点 | 比能量已到极限,循 | 比能量低,倍率性能 | 比能量低,安全性能 | 技术及配套技术不成 | 技术及配套技术不成 | 技术及配套工艺不成 |
环性能及倍率性能较 | 熟,成本高,充放电 | 熟,成本高,能量密 | ||||
差 | 较差,成本高 | 熟,成本高 | ||||
差,安全性较差 | 体积变形,导电率低 | 度低 | ||||
发展方向 | 低成本化,改善循环 | 提高容量,低成本 | 提高容量,低成本化低成本化,解决与其 他材料的配套问题 | 低成本化,解决与其 | 解决钛锂酸与正极、 | |
化,降低内阻 | 他材料的配套问题 | 电解液的匹配 |
资料来源:凯金能源公告,信达证券研发中心
硅基材料存在体积膨胀和电导率低等问题,成为产业化壁垒。在充电时,锂离子从正极脱出,嵌入硅晶体中,会造成硅材料的严重膨胀(膨胀率可达 300%,而碳材料只有 16%);在放
请阅读最后一页免责声明及信息披露http://www.cindasc.com 14
电时,锂离子从硅晶体中脱出,又造成材料的收缩。硅材料的膨胀和收缩带来的体积变化会产生硅颗粒破裂、材料粉化、极片脱落、活性物质消耗等问题,从而严重影响电池的循环性能和容量。针对上述缺陷,当前主要采用硅基材料纳米化以及与碳材料复合来解决。
将硅颗粒减小到纳米级并与其他材料复合包覆可解决体积膨胀和电导率低的问题。将硅的颗粒尺寸减小到纳米级可以释放由于体积变化过大而引起的结构应力,但减小到纳米级使硅容易发生团聚从而导致容量衰减,因此,将 Si 与基体材料进行复合得到硅基复合材料,利用
硅基材料一方面缓解硅的体积膨胀效应,同时提供导电性,同时充分发挥硅材料高容量特性。
根据分散基体的不同,硅基负极材料主要有 SiO、硅碳复合负极材料及硅基合金负极材料三
大类,其中硅氧负极、硅碳负极应用较为领先。硅碳复合负极材料以及 SiO 负极材料的工
艺相对成熟,综合电化学性能较优,是目前最为主流的硅基负极材料。硅基合金负极材料相对碳负极材料克容量提升效果明显,但是因为其工艺难度高、生产成本高,且首次充放电效率较低,目前尚未大规模使用。
图表 18:三类硅基负极材料优劣势对比
主要种类 | 优势 | 劣势 |
SiO 负极材料 | A、可逆容量高,达 1,700-1,800mAh/g,接近理论容量 | A、首次库伦效率低(71.4%),无法单独使用,需要预锂化处理 |
B、循环性能和倍率性能相对于其他硅基负极材料好 | B、SiO 工艺复杂,生产成本非常高 | |
硅碳复合负极材料 | A、克容量高 | A、大批量生产电化学性能优异的产品难度较高 |
B、首次充放电效率高 | B、循环性能和库伦效率有待提高 | |
C、工艺相对于其他硅基负极材料较为成熟 | C、电极膨胀率较高 |
硅基合金负极材料 体积能量密度高
A、工艺难度大、成本高
B、首次充放电效率低
C、循环性能较差
资料来源:凯金能源公告,信达证券研发中心
硅基负极中段、后段生产流程与石墨负极接近,主要差异在于前段硅材料的纳米化及包覆上。硅基负极制备工艺复杂,且各家工艺均不同,目前仍未有标准化工艺,当前较普遍的前段工序包括化学气相沉积法、溶胶凝胶法、高温热解法和机械球磨法等。在完成前段工序形成复合浆料后,通过筛分、高温石墨化和筛分、磁选等工序,得到硅碳负极材料。
图表 19:硅基负极不同制备方法对比
制备方式 | 技术特点 |
化学气相沉 | 硅碳两组分间连接紧密、结合力强,充放电过程中活性物质不易脱落,具有优良的循环稳定性和较高的首次充放电效 |
积法 | 率,碳层均匀稳定、不易出现团聚现象。此种制备方法对设备要求简单,反应过程环境友好,复合材料杂质含量少,适 |
合工业化生产。 |
该方法能够实现硅碳材料的均匀分散,而且制备的复合材料保持了较高的可逆比容量。但是碳凝胶较其他碳材料稳定性
溶胶凝胶法 | 能差,在循环过程中碳壳会产生裂痕并逐渐扩大,导致负极材料结构破裂;且凝胶中氧含量过高会生成较多不导电的 |
SiO2,导致负极材料的首次充放电效率较低。
高温热解法 | 此种方法合成的复合材料中碳的空隙结构一般较大,能较好地缓解硅在充放电过程中的体积变化。但是,高温热解法产 |
生的复合材料中的硅的分散性较差,碳层会有分布不均的状况,并且颗粒容易产生团聚等现象。 |
机械球磨法
机械球磨法制备的复合材料颗粒粒度小、各组分分布均匀,而且机械球磨法制备硅/碳复合材料具有工艺简单、成本低、
效率高,适合工业生产;但是该法是两种反应物质在机械力的作用下混合,颗粒的团聚现象难以解决。
资料来源:贝特瑞公告,信达证券研发中心
请阅读最后一页免责声明及信息披露http://www.cindasc.com 15
图表 20:硅碳负极生产流程
资料来源:翔丰华公告,信达证券研发中心
3.2 硅基负极应用加速开拓,电池+整车厂绑定上游供应商
硅基负极应用领域加速开拓。消费领域,已有第三方电池供应商飞毛腿以及小米等量产采用硅基负极的锂电池和手机,华为同样于近期公开硅基负极相关发明专利;动力领域,除特斯拉早已开拓硅基负极动力电池应用外,近年来国内整车厂商加速相关量产节奏,包括蔚来、广汽和智己等均宣布相关车型上市规划。
图表 21:硅基负极产能应用情况
应用领域 | 公司名称 | 硅基负极应用情况 |
消费领域
空客 Airbus | 2013 年,Zephyr 太阳能飞机搭载了 Amprius 开发的硅基负极——硅纳米线负极 |
飞毛腿 | 2017 年与 Amprius 合作开发“超原电”系列硅负极大容量 iPhone 内置电池 |
小米 | 2019.09,小米概念机 MIX Alpha 采用硅碳负极材料 |
小米 | 2021.03,小米 11 Ultra 通过掺硅补锂方式搭载第二代硅氧负极材料 |
华为 | 2021.02,公开“硅碳复合材料及其制备方法和锂离子电池”发明专利 |
动力领域
特斯拉 | 2015 年,Model S 采用松下供应的含硅负极圆柱电池 |
特斯拉 | 2020 年,电池日宣布未来负极材料技术将围绕硅基负极研发,使用高弹性材料抑制硅膨胀,在硅表面用覆膜 |
材料,实现续航提升和成本下降 | |
蔚来 | 使用固态电池(150 度电),采用原位固化工艺的固液电解质(半固态),用硅碳负极,配合高镍正极,能量 |
密度达到 360Wh/kg,2022 年底装车 | |
广汽 | 搭载海绵硅负极极片电池的 AION LX 电芯能量密度超 280Wh/kg,预计 2021 年内投产上市 |
智己汽车 | 采用掺硅补锂电池(93、115 度电)掺硅补锂电池,电池供应商为宁德时代,拥有 300Wh/kg 单体能量密度, |
在未来 5 年内将陆续推向市场 |
资料来源:各公司公告、网站,信达证券研发中心整理
下游客户加速在硅基负极布局,戴姆勒、宝马、三星、ATL 绑定 Sila Nano。Sila Nano2011
年由特斯拉七号员工,Roadster 电池首席工程师 Berdichevsky、特斯拉 Roadster 和戴姆勒
Smart fortwo 电池组工程师 Jacobs 和佐治亚理工学院材料科学教授 Yushin 创立。成立以
来先后获得 ATL、三星、戴姆勒等下游客户投资。
2021年1月 Sila 获得5.9亿美元F 轮融资,规划建设北美硅基负极材料工厂,满足100GWh
电池需求,供应 3C 和动力电池市场,新工厂规划 2024 年生产,2025 年实现对动力电池的
供应。除与下游客户进行股权合作外,2018 年 Sila 与宝马集团合作,规划至 2023 年将硅基负极应用于电动汽车领域。
除电动电池外,Sila 规划硅基负极将先应用于 3C 消费市场,应用于智能手环、无线耳机和
智能手表等产品电池的硅基负极将自 2021 年起逐步上市。
请阅读最后一页免责声明及信息披露http://www.cindasc.com 16
图表 22:Sila 与戴姆勒合作计划
资料来源:戴姆勒官网,信达证券研发中心
下游客户加速在硅基负极布局,雷诺-日产-三菱、LG 和三星等投资硅基负极制造商 Enevate,
规划 2024-2025 年用于电动电池生产;ATL、巴斯夫、昭和电工等投资 Group 14 加速硅
基负极商业化;此外,硅基负极电池生产厂商 Enovix2021 年上市,规划从 3C 电池开始,
至 2025 年实现硅基动力电池供应。
图表 23:Enovix 电池应用领域开拓计划
资料来源:Enovix 公告,信达证券研发中心
3.3 杉杉处国内硅基负极一线梯队,已实现批量供货,国内应用前景广阔
国内硅基负极出货有望从 2020 年 0.6 万吨提升至 2025 年 2.2 万吨,年复合增速 30%。据
高工锂电数据,国内硅基负极产量自 2017 年突破千吨级,并持续快速增长,至 2020 年已
达 0.6 万吨。预计 2023 年将突破万吨级,并在 2025 年达到 2.2 万吨,年复合增速 30%。
请阅读最后一页免责声明及信息披露http://www.cindasc.com 17
图表 24:2015-2025 年中国硅基负极材料市场出货量分析及预测(万吨)
2.5 | 250% | ||||||
2.0 | 200% | ||||||
1.5 | 150% | ||||||
1.0 | 100% | ||||||
0.5 | 50% | ||||||
0.0 | 2015 | 2016 | 2017 | 2019 | 2020 2021E 2022E 2023E 2024E 2025E | 0% | |
2018 | |||||||
出货量/万吨 | 同比变化 |
资料来源:凯金能源公告,信达证券研发中心
目前国内布局硅基负极的企业中,贝特瑞和杉杉股份为一线梯队。其中贝特瑞具备产能 0.3
万吨,自 2013 年实现批量出货,先后开拓三星(2019 年前独供)、松下等客户,并通过松
下进入特斯拉供应链,近年来年出货量维持 0.2-0.3 万吨左右。2021 年进一步与华为合作开
发硅基负极项目并对相关技术申请专利保护。
杉杉股份高容量硅基负极 2017 年实现量产并供货,2018 年开始对 CATL 供货,并在日、
韩拥有硅基负极国际专利。截至 2021 上半年,杉杉股份硅基负极产品已批量应用于 3C 领
域,且预计 2021 下半年进入全球知名电动工具企业的供应链实现批量供货;动力电池领域,
已经通过主流车企的多轮评测,待车型上市后,将实现批量应用。产能角度,公司 2021 年中报新增在建工程项目——第二代硅基负极材料量产基地项目,当前处于快速扩产阶段,年
底有望逐步释放产能。
图表 25:不同厂家负极材料产能性能对比
公司名称 | 硅基负极类别 | 型号 | 首次放电容量 | 首次库伦效率 |
(mAh/g) | (%) | |||
杉杉股份 | 硅氧负极 | GS60 | ≥600 | ≥88.5±1.0 |
硅碳负极 | SG6X | 600-650 | ≥88.5±1.0 | |
贝特瑞 | 硅系复合材料 | S400 | 400-499 | 92-94 |
S500 | 500-599 | 90-92 | ||
氧化亚硅复合材 | S600 | 600-650 | 89-90 | |
S420-2A | ≥420 | 92.5±1.0 | ||
S450-2A | ≥450 | 91.5±1.0 | ||
料 | ||||
S500-2A | ≥500 | 90.0±1.0 | ||
凯金能源 | 氧化亚硅 | ≥1600 | 90 | |
纳米硅负极 | ≥1500 | 87 |
翔丰华
硅碳负极 | SG09 | 450 | >85 |
硅氧负极 | 450 | >80 |
资料来源:各公司公告、网站,信达证券研发中心整理
四、正极材料:绑定巴斯夫,开拓大客户,突破专利壁垒
德国巴斯夫(BASF)是全球著名的化工企业,其业务可分为六大板块:化学品、材料、工
业解决方案、表面处理技术、营养与护理、农业解决方案等。其中,表面处理技术板块 2020
年实现营收 167 亿欧元,营收占比约 28%,是公司第一大业务板块。公司整体业务分配较
为均匀,其他业务板块营收占比均在 10-20%之间。
请阅读最后一页免责声明及信息披露http://www.cindasc.com 18
图表 26:巴斯夫分业务营收(亿欧元)
700
600
500
400
300
200
100
0
表面处理技术 | 2019 | 材料 | 2020 | 营养护理 | 2021H1 | 其他 |
化学品 | 工业解决方案 | 农业解决方案 |
资料来源:巴斯夫官网,信达证券研发中心
表面处理技术业务板块主要包括催化剂和涂料两类产品。催化剂产品主要包括移动排放催化剂、化学催化剂、电池材料、金属产品和服务等,应用于汽车、化学和制药、炼油、电池制造等领域;涂料产品主要包括汽车 OEM 涂料、汽车修补漆、装饰涂料等。
图表 27:巴斯夫催化剂、涂料收入占比 | ||||||||
| ||||||||
资料来源:巴斯夫官网,信达证券研发中心 |
2020 年巴斯夫整体营业收入 591.49 亿欧元,同比下降 0.28%。净利润为-10.6 亿欧元。
2021 年上半年随着新冠疫情得到有效控制,全球各行业复工复产,2021 年上半年巴斯夫营
收规模大幅增长,营业收入为 391.53 亿欧元,同比增长 33.30%,净利润为 33.72 亿欧元,扭亏为盈。
图表 28:巴斯夫历年营业收入
700 | 35% | |||||
600 | 30% | |||||
25% | ||||||
500 | 20% | |||||
400 | ||||||
15% | ||||||
300 | ||||||
10% | ||||||
200 | 2017 | 2018 | 2019 | 2020 | 2021H1 | 5% |
100 | 0% | |||||
0 | -5% | |||||
营业收入(亿欧元) | 同比增长 |
资料来源:巴斯夫官网,信达证券研发中心
图表 29:巴斯夫历年净利润
100 | 100% |
80 | |
50% |
60
0%40
-50%
20
0 | -100% | |||||
2017 | 2018 | 2019 | 2020 | 2021H1 | ||
-20 | -150% | |||||
净利润(亿欧元) | 同比增长 |
资料来源:巴斯夫官网,信达证券研发中心
巴斯夫拥有阿贡实验室核心专利许可,并可进一步授权于相关正极材料生产厂商。全球三元正极专利包括由美国阿贡实验室申请的 Michael Thackeray 教授发明的相关专利,以及由
3M 公司申请的 Jeff Dahn 教授等发明的相关专利。其中巴斯夫是阿贡实验室专利唯一被许
请阅读最后一页免责声明及信息披露http://www.cindasc.com 19
可人,同时可授予分许可。此外,2021 年,巴斯夫与优美科签署非排他性专利交叉许可协议,进一步提升三元材料定制化能力,满足客户在电池和应用层面多样化且复杂的需求。
图表 30:巴斯夫拥有全球领先专利技术优势
资料来源:巴斯夫官网,3M 官网,信达证券研发中心
巴斯夫是全球首家在三大洲均有三元正极工厂的公司。依托自有 HEDTM品牌 NCM 和 NCA
正极材料,持续加大对动力市场开拓力度。
亚洲方面,2015 年成立巴斯夫户田研发中心,并在 2017 年成立生产基地;2021 年收购杉
杉能源控股权,形成中国生产基地;同时在印度尼西亚于埃赫曼集团合作开发镍钴精炼产能;
美洲方面,巴斯夫 2012 年在美国成立第一座正极生产工厂,2018 年与户田成立巴斯夫户
田美洲,整合北美两座工厂;
欧洲方面,巴斯夫在芬兰规划三元前驱体产能,并在德国规划三元正极材料和回收产能,相关于 2020 年开始建设,预计 2022 年投产,形成 40 万辆新能源汽车供应能力。
整体来看,巴斯夫规划至 2022 年,杉杉能源拥有 9 万吨三元材料产能,其他基地拥有 7 万
吨产能,公司整体产能达 16 万吨。
图表 31:巴斯夫全球正极材料产能规划
资料来源:巴斯夫官网,信达证券研发中心
请阅读最后一页免责声明及信息披露http://www.cindasc.com 20
五、正极材料:加速一体化布局,盈利能力有望持续提升
公司已构建完整正极材料产业链。公司成立永杉锂业自建锂盐产能;宁夏基地及常青新能源具备前驱体产能,此外巴斯夫规划在印尼建设钴、镍冶炼基地;杉杉能源借助自供原材料生产三元材料并将其销售予电池厂商后,常青新能源拥有电池回收业务,构建完整正极材料产业链。
图表 32:杉杉股份一体化产业布局情况
资料来源:公司公告,信达证券研发中心
巴斯夫及公司规划至 2022 年形成 9 万吨正极材料及配套上游材料产能。截至目前,公司拥
有麓谷、宁乡、宁夏和大长沙四大生产基地,合计产能 6 万吨,未来通过大长沙基地二期等
扩产,至 2022 年形成 9 万吨正极材料产能;此外公司宁夏生产基地和常青新能源分别拥有
2.2 和 2 万吨产能;永杉锂业一期将贡献 2.5 万吨锂盐产能。
图表 33:杉杉股份正极产业链产能情况
生产基地 | 正极材料产能 | 三元前驱体产能 | 碳酸锂产能 | 投产日期 |
/万吨 | /万吨 | /万吨 | ||
麓谷基地 | 1.2 | 2010 年之前 | ||
宁乡基地 | 2.6 | 2015 | ||
宁夏石嘴山基地 | 1.2 | 2.2 | 0.28 | 2019 |
大长沙基地_一期 | 1 | 2020 | ||
大长沙基地_二期 | 2.4 | 2022 | ||
常青新能源 | 2 | 2019 | ||
永杉锂业 | 2.5 | 2021 | ||
合计 | 8.4 | 4.2 | 2.78 |
资料来源:公司公告,信达证券研发中心
公司从关联方采购量持续放量。近年来,公司向常青新能源的关联采购持续放量,2020 年
关联采购金额为 3.58 亿元,2021 年预计为 11.5 亿元,我们测算对应三元前驱体在 1 万吨
左右,占公司 2021 年预计正极材料出货量的 25%左右。
请阅读最后一页免责声明及信息披露http://www.cindasc.com 21
图表 34:杉杉能源与常青新能源关联采购规模/亿元
14
12
10
8
6
4
2
-
2018 | 2019 | 2020 | 2021E |
资料来源:公司公告,信达证券研发中心
图表 35:常青新能源历年营收及关联采购占比 | ||||||||||||||||||||||||||||||||
| ||||||||||||||||||||||||||||||||
资料来源:公司公告,信达证券研发中心 |
永杉锂业 9 月底试产,逐步满足公司碳酸锂需求。永杉锂业一期 2.5 万吨碳酸锂产能预计将
于 2021 年 9 月底试产,当前合计规划 4.5 万吨锂盐产能。公司预计 2021 年 6 月起未来 1
年内,永杉锂业规划向杉杉能源销售 8 亿元左右锂盐,我们测算对应锂盐在 1.3 万吨左右。
六、盈利预测和估值
我们预计公司 2021-2023 年实现营收 246.7、281.1 和 333.6 亿元,同比增长 200.3%、13.9%
和 18.7%;归母净利 19.2、28.0 和 35.4 亿元,同比增长 1288.7%、46.2%和 26.4%,当前
市值对应市盈率为 25.0x、17.1x 和 13.5x,维持对公司“买入”评级。
七、风险因素
新冠疫情等导致全球新能源汽车产销不及预期风险;产品价格波动导致公司盈利不及预期风险;原材料价格波动风险;技术路线变化风险;进口退税、杉杉能源股权转让、拟剥离资产转让等事件完成进度不及预期风险等。
请阅读最后一页免责声明及信息披露http://www.cindasc.com 22
研究团队简介
武浩,电力设备新能源行业分析师。中央财经大学金融硕士,曾任东兴证券基金业务部研究员,2020 年加入信达证券研发中心,负责电力设备新能源行业研究。
陈磊,电力设备新能源行业分析师。吉林大学硕士,2018 年 7 月加入信达证券研发中心,从事新能源行业研究。
机构销售联系人
区域 | 姓名 | 手机 | 邮箱 | |
全国销售总监 | 韩秋月 | 13911026534 | hanqiuyue@cindasc.com | |
华北区销售副总监(主持工作)陈明真 | 15601850398 | chenmingzhen@cindasc.com | ||
华北区销售 | 卞双 | 13520816991 | bianshuang@cindasc.com | |
华北区销售 | 阙嘉程 | 18506960410 | quejiacheng@cindasc.com | |
华北区销售 | 刘晨旭 | 13816799047 | liuchenxu@cindasc.com | |
华北区销售 | 祁丽媛 | 13051504933 | qiliyuan@cindasc.com | |
华北区销售 | 陆禹舟 | 17687659919 | luyuzhou@cindasc.com | |
华东区销售 | 吴国 | 15800476582 | wuguo@cindasc.com | |
华东区销售 | 国鹏程 | 15618358383 | guopengcheng@cindasc.com | |
华东区销售 | 李若琳 | 13122616887 | liruolin@cindasc.com | |
华东区销售 | 张琼玉 | 13023188237 | zhangqiongyu@cindasc.com | |
华东区销售 | 戴剑箫 | 13524484975 | daijianxiao@cindasc.com | |
华南区销售总监 | 王留阳 | 13530830620 | wangliuyang@cindasc.com | |
华南区销售 | 陈晨 | 15986679987 | chenchen3@cindasc.com | |
华南区销售 | 王雨霏 | 17727821880 | wangyufei@cindasc.com | |
华南区销售 | 王之明 | 15999555916 | wangzhiming@cindasc.com | |
华南区销售 | 闫娜 | 13229465369 | yanna@cindasc.com | |
华南区销售 | 焦扬 | 13032111629 | jiaoyang@cindasc.com |
请阅读最后一页免责声明及信息披露http://www.cindasc.com 24
分析师声明
负责本报告全部或部分内容的每一位分析师在此申明,本人具有证券投资咨询执业资格,并在中国证券业协会注册登记为证券分
析师,以勤勉的职业态度,独立、客观地出具本报告;本报告所表述的所有观点准确反映了分析师本人的研究观点;本人薪酬的任何
组成部分不曾与,不与,也将不会与本报告中的具体分析意见或观点直接或间接相关。
免责声明
信达证券股份有限公司(以下简称“信达证券”)具有中国证监会批复的证券投资咨询业务资格。本报告由信达证券制作并发布。
本报告是针对与信达证券签署服务协议的签约客户的专属研究产品,为该类客户进行投资决策时提供辅助和参考,双方对权利与 义务均有严格约定。本报告仅提供给上述特定客户,并不面向公众发布。信达证券不会因接收人收到本报告而视其为本公司的当 然客户。客户应当认识到有关本报告的电话、短信、邮件提示仅为研究观点的简要沟通,对本报告的参考使用须以本报告的完整 版本为准。
本报告是基于信达证券认为可靠的已公开信息编制,但信达证券不保证所载信息的准确性和完整性。本报告所载的意见、评估及 预测仅为本报告最初出具日的观点和判断,本报告所指的证券或投资标的的价格、价值及投资收入可能会出现不同程度的波动,涉及证券或投资标的的历史表现不应作为日后表现的保证。在不同时期,或因使用不同假设和标准,采用不同观点和分析方法,致使信达证券发出与本报告所载意见、评估及预测不一致的研究报告,对此信达证券可不发出特别通知。
在任何情况下,本报告中的信息或所表述的意见并不构成对任何人的投资建议,也没有考虑到客户特殊的投资目标、财务状况或 需求。客户应考虑本报告中的任何意见或建议是否符合其特定状况,若有必要应寻求专家意见。本报告所载的资料、工具、意见 及推测仅供参考,并非作为或被视为出售或购买证券或其他投资标的的邀请或向人做出邀请。
在法律允许的情况下,信达证券或其关联机构可能会持有报告中涉及的公司所发行的证券并进行交易,并可能会为这些公司正在 提供或争取提供投资银行业务服务。
本报告版权仅为信达证券所有。未经信达证券书面同意,任何机构和个人不得以任何形式翻版、复制、发布、转发或引用本报告 的任何部分。若信达证券以外的机构向其客户发放本报告,则由该机构独自为此发送行为负责,信达证券对此等行为不承担任何 责任。本报告同时不构成信达证券向发送本报告的机构之客户提供的投资建议。
如未经信达证券授权,私自转载或者转发本报告,所引起的一切后果及法律责任由私自转载或转发者承担。信达证券将保留随时
追究其法律责任的权利。
评级说明
投资建议的比较标准 | 股票投资评级 | 行业投资评级 | ||
本报告采用的基准指数 :沪深 300 指数(以下简称基准); 时间段:报告发布之日起 6 个月 内。 | 买入:股价相对强于基准 20%以上;
持有:股价相对基准波动在±5% 之间; 卖出:股价相对弱于基准 5%以下。 | 看好:行业指数超越基准;
看淡:行业指数弱于基准。 |
风险提示
证券市场是一个风险无时不在的市场。投资者在进行证券交易时存在赢利的可能,也存在亏损的风险。建议投资者应当充分深入 地了解证券市场蕴含的各项风险并谨慎行事。
本报告中所述证券不一定能在所有的国家和地区向所有类型的投资者销售,投资者应当对本报告中的信息和意见进行独立评估,
并应同时考量各自的投资目的、财务状况和特定需求,必要时就法律、商业、财务、税收等方面咨询专业顾问的意见。在任何情
况下,信达证券不对任何人因使用本报告中的任何内容所引致的任何损失负任何责任,投资者需自行承担风险。
请阅读最后一页免责声明及信息披露http://www.cindasc.com 25
浏览量:970